Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Pharmacol ; 17: e18761429282063, 2024.
Article in English | MEDLINE | ID: mdl-38389418

ABSTRACT

BACKGROUND: Nicosulfuron, a widely used herbicide in crops, has raised concerns due to its escalating presence as an environmental pollutant, particularly in soil and water. The potential adverse effects of nicosulfuron on animals, including reproductive toxicity, have garnered attention. OBJECTIVE: The study aimed to evaluate the reproductive toxicity of nicosulfuron in male mice. METHODS: Male mice were orally administrated with three different concentration gradients (350, 700, and 1400 mg/kg) of nicosulfuron for 35 days. The investigation delved into sperm quality, testicular structures, and expression of cleaved caspase-3 and NF-κB p65 of the testes. RESULTS: The finding unveiled a correlation between nicosulfuron exposure and detrimental effects on sperm quality and alteration of testicular structure. Notably, parameters, such as sperm survival rate (SUR) and sperm motility (MOT), exhibited a decline in relation to increasing nicosulfuron dosages. Moreover, in the mice subjected to higher doses of nicosulfuron, elevated expression of cleaved caspase-3 and NF-κB p65 was observed in the testes. Interestingly, we also observed an increase of NF-κB p65 expression in the mice exposed to the nicosulfuron. CONCLUSION: Our research revealed that exposure to nicosulfuron resulted in compromised sperm quality and alterations in testicular structure. The correlation between nicosulfuron and apoptosis, especially via the NF-κB pathway, provided significant insights into the mechanisms underpinning these detrimental effects. These findings significantly enhance our comprehension of the potential hazards associated with nicosulfuron exposure and its impacts on the reproductive health of animals.


Subject(s)
NF-kappa B , Pyridines , Sulfonylurea Compounds , Testis , Male , Mice , Animals , NF-kappa B/metabolism , Caspase 3/metabolism , Caspase 3/pharmacology , Oxidative Stress , Sperm Motility , Semen/metabolism , Spermatozoa/metabolism , Signal Transduction , Apoptosis
2.
Reproduction ; 166(1): 27-36, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37140983

ABSTRACT

In brief: The current declining trend in male fertility parallels the increasing prevalence of obesity worldwide. This paper revealed that the poor in vitro fertilization rates and decreased sperm motility in obese mice due to excessive oxidative stress enhanced apoptosis and impaired glucose metabolism in the testes. Abstract: Obesity is an urgent public health problem in recent decades, linked to reduced reproductive potential, and negatively affects the success of assisted reproduction technology. The aim of this study is to investigate the mechanisms underlying impaired male fertility caused by obesity. Male C57BL/6 mice fed a high-fat diet for 20 weeks served as mouse models with moderate (20% < body fat rate (BFR) < 30%) and severe obesity (BFR > 30%). Our results showed poor in vitro fertilization rates and decreased sperm motility in obese mice. Abnormal testicular structures were identified in male mice with moderate and severe obesity. The expression level of malondialdehyde increased with obesity severity. This finding indicates that oxidative stress plays a role in male infertility caused by obesity, which was further confirmed by the decreased expression of nuclear factor erythroid 2-related factor 2, superoxide dismutase, and glutathione peroxidases. Our study also found that the expression of cleaved caspase-3 and B-cell lymphoma-2 showed an obesity severity-dependent manner indicating that apoptosis is highly correlated with male infertility caused by obesity. Moreover, the expression of glycolysis-related proteins, including glucose transporter 8, lactate dehydrogenase A, monocarboxylate transporter 2 (MCT2), and MCT4, decreased significantly in the testes of obese male mice, suggesting energy supply for spermatogenesis is impaired by obesity. Taken together, our findings provide evidence that obesity impairs male fertility through oxidative stress, apoptosis, and blockage of energy supply in the testes and suggest that male obesity influences fertility through complex and multiple mechanisms.


Subject(s)
Infertility, Male , Obesity, Morbid , Humans , Male , Mice , Animals , Obesity, Morbid/complications , Obesity, Morbid/metabolism , Mice, Obese , Sperm Motility , Mice, Inbred C57BL , Obesity/complications , Obesity/metabolism , Testis/metabolism , Infertility, Male/etiology , Infertility, Male/metabolism , Oxidative Stress , Apoptosis , Glycolysis
3.
Nature ; 609(7926): 369-374, 2022 09.
Article in English | MEDLINE | ID: mdl-36045296

ABSTRACT

Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1-7. However, CAR-T cell therapy currently has several limitations8-12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR-Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469 ), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were effective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efficacy of non-viral, gene-specific integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.


Subject(s)
Immunotherapy, Adoptive , Lymphoma, B-Cell , Receptors, Chimeric Antigen , Animals , Antigens, CD19/immunology , Electroporation , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/therapy , Memory T Cells/immunology , Programmed Cell Death 1 Receptor/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use , Recurrence , Single-Cell Analysis , Xenograft Model Antitumor Assays
4.
Ecotoxicol Environ Saf ; 238: 113608, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35525112

ABSTRACT

Hexavalent chromium Cr(VI) is a well-known environmental toxic metal that causes reprotoxicity in pregnant females. There are currently no appropriate interventions or treatments for Cr(VI) exposure during pregnancy. Herein, the protective effect of melatonin (MLT) against Cr(VI)-induced reprotoxicity is investigated by administrating MLT to pregnant mice exposed to Cr(VI). The results indicate that MLT effectively alleviates Cr(VI)-induced adverse pregnancy outcomes, restoring the decreased fetal weight and increased fetal resorption and malformation caused by Cr(VI) exposure to normal levels. MLT reduces the negative effects of Cr(VI) on follicular atresia and the development of primordial follicle in the maternal ovarian, thereby mitigating the decline in the reserve of primordial follicles. MLT alleviates Cr(VI)-induced oxidative stress, hence reducing the excessive accumulation of malondialdehyde in the maternal ovary. MLT inhibits Cr(VI)-induced apoptosis of ovarian granulosa cells and the expression of cleaved caspase-3 in the ovary. MLT reduces the increase in serum follicle-stimulating hormone caused by Cr(VI) exposure, while elevating anti-Mullerian hormone levels. We demonstrate that MLT reverses Cr(VI)-induced reprotoxicity in pregnant mice, opening up a new avenue for treating reproductive defects caused by environmental stress.


Subject(s)
Melatonin , Animals , Chromium/metabolism , Female , Follicular Atresia , Melatonin/metabolism , Melatonin/pharmacology , Mice , Ovary , Pregnancy , Pregnancy Outcome
5.
Molecules ; 27(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35268616

ABSTRACT

Cancers have always been the most difficult to fight, the treatment of cancer is still not considered. Thus, exploring new anticancer drugs is still imminent. Traditional Chinese medicine has played an important role in the treatment of cancer. Polyphenol oxidase (PPO) extracted from Edible mushroom has many related reports on its characteristics, but its role in cancer treatment is still unclear. This study aims to investigate the effects of PPO extracted from Edible mushroom on the proliferation, migration, invasion, and apoptosis of cancer cells in vitro and explore the therapeutic effects of PPO on tumors in vivo. A cell counting kit-8 (CCK8) assay was used to detect the effect of PPO on the proliferation of cancer cells. The effect of PPO on cancer cell migration ability was detected by scratch test. The effect of PPO on the invasion ability of cancer cells was detected by a transwell assay. The effect of PPO on the apoptosis of cancer cells was detected by flow cytometry. Female BALB/c mice (18-25 g, 6-8 weeks) were used for in vivo experiments. The experiments were divided into control group, model group, low-dose group (25 mg/kg), and high-dose group (50 mg/kg). In vitro, PPO extracted from Edible mushroom significantly inhibited the proliferation, migration, and invasion capability of breast cancer cell 4T1, lung cancer cell A549, and prostate cancer cell C4-2, and significantly promoted the apoptosis of 4T1, A549, and C4-2. In vivo experiments showed PPO inhibitory effect on tumor growth. Collectively, the edible fungus extract PPO could play an effective role in treating various cancers, and it may potentially be a promising agent for treating cancers.


Subject(s)
Catechol Oxidase
6.
Cell Death Dis ; 11(10): 822, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009373

ABSTRACT

Hepatocellular carcinoma (HCC) is a major leading cause of cancer-related death worldwide. Alpha fetoprotein (AFP) is reactivated in a majority of hepatocellular carcinoma (HCC) and associated with poor patient outcomes. Although increasing evidence has shown that AFP can regulate HCC cell growth, the precise functions of AFP in hepatocarcinogenesis and the associated underlying mechanism remain incompletely understood. In this study, we demostrated that depleting AFP significantly suppressed diethylnitrosamine (DEN)-induced liver tumor progression in an AFP gene-deficient mouse model. Similarly, knocking down AFP expression inhibited human HCC cell proliferation and tumor growth by inducing apoptosis. AFP expression level was inversely associated with the apoptotic rate in mouse and human HCC specimens. Investigation of potential cross-talk between AFP and apoptotic signaling revealed that AFP exerted its growth-promoting effect by suppressing the Fas/FADD-mediated extrinsic apoptotic pathway. Mechanistically, AFP bound to the RNA-binding protein HuR, increasing the accumulation of HuR in the cytoplasm and subsequent inhibition of Fas mRNA translation. In addition, we found that inhibiting AFP enhanced the cytotoxicity of therapeutics to AFP-positive HCC cells by activating HuR-mediated Fas/FADD apoptotic signaling. Conclusion: Our study defined the pro-oncogenic role of AFP in HCC progression and uncovered a novel antiapoptotic mechanism connecting AFP to HuR-mediated Fas translation. Our findings suggest that AFP is involved in the pathogenesis and chemosensitivity of HCC and that blockade of AFP may be a promising strategy to treat advanced HCC.


Subject(s)
Apoptosis/genetics , Carcinoma, Hepatocellular/metabolism , Fas-Associated Death Domain Protein/metabolism , alpha-Fetoproteins/genetics , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Fas-Associated Death Domain Protein/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , alpha-Fetoproteins/metabolism
7.
World J Gastroenterol ; 21(36): 10375-84, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26420964

ABSTRACT

AIM: To investigate the effects of Recql5 deficiency on liver injury induced by lipopolysaccharide/D-galactosamine (LPS/D-Gal). METHODS: Liver injury was induced in wild type (WT) or Recql5-deficient mice using LPS/D-Gal, and assessed by histological, serum transaminases, and mortality analyses. Hepatocellular apoptosis was quantified by transferase dUTP nick end labeling assay and Western blot analysis of cleaved caspase-3. Liver inflammatory chemokine and cytochrome P450 expression was analyzed by quantitative reverse transcription-PCR. Neutrophil infiltration was evaluated by myeloperoxidase activity. Expression and phosphorylation of ERK, JNK, p65, and H2A.X was determined by Western blot. Oxidative stress was evaluated by measuring malondialdehyde production and nitric oxide synthase, superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase activity. RESULTS: Following LPS/D-Gal exposure, Recql5-deficient mice exhibited enhanced liver injury, as evidenced by more severe hepatic hemorrhage, higher serum aspartate transaminase and alanine transaminase levels, and lower survival rate. As compared to WT mice, Recql5-deficient mice showed an increased number of apoptotic hepatocytes and higher cleaved caspase-3 levels. Recql5-deficient mice exhibited increased DNA damage, as evidenced by increased γ-H2A.X levels. Inflammatory cytokine levels, neutrophil infiltration, and ERK phosphorylation were also significantly increased in the knockout mice. Additionally, Recql5-deficient mice exhibited increased malondialdehyde production and elevated inducible nitric oxide synthase, superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase activity, indicative of enhanced oxidative stress. Moreover, CYP450 expression was significantly downregulated in Recql5-deficient mice after LPS/D-Gal treatment. CONCLUSION: Recql5 protects the liver against LPS/D-Gal-induced injury through suppression of hepatocyte apoptosis and oxidative stress and modulation of CYP450 expression.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Galactosamine , Hepatocytes/enzymology , Lipopolysaccharides , Liver/enzymology , RecQ Helicases/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Chemical and Drug Induced Liver Injury/enzymology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytokines/genetics , Cytokines/metabolism , DNA Damage , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Hepatocytes/pathology , Inflammation Mediators/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Oxidative Stress , Phosphorylation , RecQ Helicases/deficiency , RecQ Helicases/genetics , Signal Transduction/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...